Engineered cell-laden human protein-based elastomer.

نویسندگان

  • Nasim Annabi
  • Suzanne M Mithieux
  • Pinar Zorlutuna
  • Gulden Camci-Unal
  • Anthony S Weiss
  • Ali Khademhosseini
چکیده

Elastic tissue equivalence is a vital requirement of synthetic materials proposed for many resilient, soft tissue engineering applications. Here we present a bioelastomer made from tropoelastin, the human protein that naturally facilitates elasticity and cell interactions in all elastic tissues. We combined this protein's innate versatility with fast non-toxic fabrication techniques to make highly extensible, cell compatible hydrogels. These hydrogels can be produced in less than a minute through photocrosslinking of methacrylated tropoelastin (MeTro) in an aqueous solution. The fabricated MeTro gels exhibited high extensibility (up to 400%) and superior mechanical properties that outperformed other photocrosslinkable hydrogels. MeTro gels were used to encapsulate cells within a flexible 3D environment and to manufacture highly elastic 2D films for cell attachment, growth, and proliferation. In addition, the physical properties of this fabricated bioelastomer such as elasticity, stiffness, and pore characteristics were tuned through manipulation of the methacrylation degree and protein concentration. This photocrosslinkable, functional tissue mimetic gel benefits from the innate biological properties of a human elastic protein and opens new opportunities in tissue engineering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Heavy Metals on Silencing of Engineered Long Interspersed Element-1 Retrotransposon in Nondividing Neuroblastoma Cell Line

Background: L1 retrotransposons are the most active mobile DNA elements in human genome. Unregulated L1 retrotransposition may have deleterious effect by disrupting vital genes and inducing genomic instabilities. Therefore, human cells control L1 elements by silencing their activities through epigenetic mechanisms. It has been shown that cell division and heavy metals stimulate the frequency of...

متن کامل

Genetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein

Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...

متن کامل

Construction and cloning of a recombinant expression vector containing human Cd20 Gene for antibody therapy in Non-Hodgkin Lymphoma

ABSTRACT Introduction: Non-Hodgkin lymphoma (NHL) is a cancer that starts in lymphocytes. The main treatment for NHL is chemotherapy and radiation. Today immunotherapy is a promising therapeutic approach in the treatment of a variety cancers which is high specific unlike previous methods. Antibodies do not penetrate effectively into tumore tissues because of their large size. Whe...

متن کامل

Construction of Hybrid Gene of Hepatitis B Surface Antigen Carrying Heat-Stable Enterotoxin of Escherichia coli and Its Expression in Mammalian Cell Line

Hepatitis B surface antigen is the first genetically engineered vaccine licensed for human use. Various strategies have been proposed to obtain a vaccine that would bypass the need for injection. In this study, a non-toxic portion of heat-stable enterotoxin of Escherichia coli that is capable of adhering to epithelial cells was inserted at amino acid position 112 of hepatitis surface antigen. T...

متن کامل

Tissue Engineered Scaffolds in Regenerative Medicine

Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 34 22  شماره 

صفحات  -

تاریخ انتشار 2013